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ABSTRACT

Recent years have witnessed a convergence between research in
SPL and Model-Driven Engineering (MDE) that leverages the com-
plementary capabilities that both paradigms can offer. A crucial
factor for the success of MDE is the availability of effective support
for detecting and fixing inconsistencies among model elements.
The importance of such support is attested by the extensive liter-
ature devoted to the topic. However, when coupled with variabil-
ity, the research focus has been devoted to inconsistency detection,
while leaving the important issue of fixing the inconsistency largely
unaddressed. In this research-in-progress paper, we explore one of
the issues that variability raises for inconsistency fixing. Namely,
in which features to locate the fixes. We compute what is the min-
imal number of fixes and use it as a baseline to compare fixes ob-
tained with a heuristic based on feature model analysis and random
approaches. Our work highlights the pros and cons of both ap-
proaches and suggests how they could be addressed.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design; D.2.13 [Software Engi-
neering]: Reusable Software

General Terms

Design, Model, Consistency, Software Product Line

Keywords

Consistency checking, variability, safe composition, Feature Ori-
ented Software Development

1. INTRODUCTION

As Model-Driven Engineering practices become more common-
place, so does the importance of keeping all the involved models
consistent. A core objective of research in consistency checking has
been the verification that models adhere to consistency rules which
describe the semantic relationships amongst their elements [23]].
Violations to consistency rules are called inconsistencies and must
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Figure 1: Standard Model Inconsistency Example

be effectively detected and, whenever possible, resolved. Multiple
approaches have been proposed for consistency checking that have
proven successful [23].

Variability poses an even more stringent demand for consistency
checking, namely, verifying that not only one but all possible fea-
ture combinations that are allowed in the product line are indeed
consistent. Variability modeling specifies all meaningful and legal
feature combinations in a SPL, and its de facto standard are Fea-
ture Models (FM) [12]. A rather naive approach would thus be to
check the consistency and fix any inconsistencies for each possible
feature combination that is specified by a feature model. By fixing,
we mean changing the model (e.g. adding, removing or modifying
model elements) such that consistency rules are no longer violated.
Not surprisingly, this trivial approach is unfeasible due to the large
number of feature combinations.

In this research-in-progress paper, we explore one of the issues
that variability raises for inconsistenct fixing. Namely, the ques-
tion we address is: Where should the fixes be placed? We com-
pute what is the minimal number of fixes required for a consistency
rule instance, and use it as a baseline to compare two fixing ap-
proaches: a heuristic approach based on feature model analysis and
a random approach. Our work highlights the pros and cons of both
approaches and suggests how they could be addressed.

2. RUNNING EXAMPLE

There has been extensive research on fixing model inconsisten-
cies in recent years [[15 10} 9} 30]. For sake of simplicity, our run-
ning example uses basic graph algorithms knowledge in conjunc-
tion with standard UML models and constraints. A typical UML
consistency rule is like the following: A message action must be
defined as an operation in the receiver’s class. For example, con-
sider Figure It shows two instances of this consistency rule:
one for message addAdorn and one for message display. The
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Figure 2: Graph Product Line Feature Model

first instance is inconsistent (marked with X) because the method
addAdorn is not defined in the receiver’s class. The second in-
stance is consistent because method display is defined in class
Edge of the class diagram.

DEFINITION 1. In the context of a consistency rule instance,
we identify two sets of elements:

® Requiring model elements: is a set of model elements that re-
quires the presence of other model elements to be consistent.

e Required model elements: is a set of model elements that
make a set of requiring model elements consistent.

In our previous example, message addAdorn with its param-
eter and target lifeline are the requiring elements while method
addAdorn and its parameter in class Edge are the required el-
ements. This distinction is based on the fact that the constraint rule
is defined in OCL from a message context.

As our running example we use a version of the Graph Prod-
uct Line (GPL) [21], a standard problem for the analysis of SPL
methodologies. The features in GPL are basic graph algorithms
and data structures. A program in GPL is a combination of dif-
ferent algorithms implemented on different data structures. Fea-
tures Base and TestProg provide the basic housekeeping func-
tionality of this product line. Graphs (GraphType) can be of
two types: Directed or Undirected. Optionally, the graphs
can have weight (Weighted). Some algorithms require searches
(Search) that can be either Depth-First Search (DF S) or Breadth-
First Search (BFS). The algorithms (Algorithms) supported are:
vertex numbering (Number), cycle checking (Cycle), Connected
Components (CC) and Strongly Connect Components (SCC), and
minimum spanning trees (Kruskal and Prim). The details of the
algorithms are not relevant for our illustration purposes; for further
information, please consult [21].

Feature models are the de facto standard to model the common
and variable features of SPL and their relationships [[12]. Figure
[] shows the feature model of our running example. Features are
depicted as labeled boxes and are connected with lines to other fea-
tures with which they relate, collectively forming a tree structure.
The root feature of a SPL is always included in all programs, in
this case the root feature is GPL. A feature can be classified as:
mandatory if it is part of a program whenever its parent feature is
also part (e.g. Base or TestProg), and optional if it may or may
not be part of a program whenever its parent feature is part (e.g.
Weighted or Search). Mandatory features are denoted with
filled circles and optional features are denoted with empty circles,
both at the child end of the feature relations denoted with lines.
Features can be grouped into: inclusive-or relation whereby one
or more features of the group can be selected (e.g. Algorithms
with its six children), and exclusive-or relation where exactly one
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feature can be selected (e.g. Directed or Undirected). These
relations are depicted as filled arcs and empty arcs, respectively.
Additionally, there are constraints that cannot be expressed directly
on a feature diagram. These constraints are defined separately and
are called cross-tree constraints [8]. As an example, the Prim ex-
cludes the Kruskal algorithm, which means that only one can
be selected in a program. As another example, feature Cycle re-
quires feature DF'S. This means that if the Cycle is selected in a
program, feature DF'S must also be selected.

Each program of the SPL is called a configuration, which we
defined as follows (adapted from [8]]):

DEFINITION 2. A configuration confis a 2-tuple [sel, sel ] where
sel and sel are respectively the set of selected and not-selected fea-
tures of a member product. Let FS be the set of features of a feature
model, such that sel, sel C FS, sel N sel = 0, and sel U sel =
FS. We use the terms conf.sel and conf.sel to respectively refer to
the set of selected and not-selected features of conf, and Qcon s to
denote the empty configuration [0,0].

A valid configuration meets all the restrictions imposed by the fea-
ture model including the cross-tree constraints. For example, the
GPL program that provides only the Kruskal algorithm has the
following valid configuration:

[{GPL,TestProg, GraphType, Algorithms,
Kruskal, Undirected, Base, Weighted},
{Directed, Search, DF'S, BF'S, Number,
Cycle,CC,SCC, Prim, Transpose}]

conf =

)]

Let us now add variability to our models of Figure [I| with re-
lation to our SPL example. Assume that: i) the sequence dia-
gram and method display are part of the Weighted feature,
ii) the Main and Edge classes with their association and method
getVertices are part of feature Base, iii) method addAdorn
is part of feature Undirected.

We illustrate our work using Feature Oriented Software Devel-
opment (FOSD), a SPL compositional approach that provides for-
malisms, methods, languages and tools for building variable, cus-
tomizable and extensible software. Nonetheless, our work can be
applied to other compositional or integrative approachesﬂ Figure
shows our consistency example of Figure[I]in FOSD. Each feature
is modularized in the so-called feature modules that contain all the
artifacts that realize the corresponding feature. For further details
on FOSD, please see [4}7,|6].

The main challenge of fixing inconsistencies in models with vari-
ability is guaranteeing that inconsistencies are fixed for all the valid
configurations of a SPL. The naive approach of creating all the valid
configurations and individually checking their consistency is not
feasible as the number of configurations can be extremely large.
Even for our small running example, we would need to check its
62 products.

The crucial point to achieve this guarantee is to effectively deter-
mine where the required elements of a consistency instance must
be. In other words and in FOSD terms, the feature modules where
the required elements should be present so that they make every
valid configuration consistent.

In the next section, we briefly summarize previous work on de-
tecting inconsistencies in models with variability [22]]. We built
upon this work to analyze and compare two approaches to find the
feature modules where fixes should be placed.

! Also known as annotative or negative variability [17].
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Figure 3: Feature Oriented Software Development Example

3. DETECTING INCONSISTENCIES

The main source of inconsistencies in models that have variabil-
ity is the discrepancies between what variability is modeled (using
a feature model) and how variability is actually realized (via an in-
tegrative or compositional approach). A mechanism to detect such
discrepancies works by mapping to a propositional logic represen-
tation both the feature model and the consistency rule instances
present in the realization of an SPL. This representation is then
used by SAT-solvers for their analysis. Next we briefly explain how
this process works for compositional approaches [22} 28], though
integrative approaches follow a similar process [[13]].

3.1 Safe Composition

In the realm of compositional approaches, safe composition is
the guarantee that all programs, which can be composed according
to a SPL’s feature model, are type safe, i.e. they do not have unde-
fined references to structural elements such as classes, methods or
fields [28]]. Though most of the research has been done within the
context of programming languages [|14], the principles underlying
safe composition can also be applied to other software artifact types
as highlighted by our previous work [22].

Safe composition is based on Czarnecki’s et al. observation that
variability realization should follow from variability modeling [[13]].
Let DOM; denote all possible configurations that can be expressed
in a feature model, and IMP ; denote a variability realization con-
sistency rule instance. Safe composition uses propositional logic to
express and relate these two terms. Our interest is in verifying that
all members of the product line satisty individual consistency rule
instances or, more concisely, that there is no member of the SPL
that does not satisfy them. This is expressed as follows:

— (DOMy=>IMPy) 2)

For each consistency rule instance that we want to verify in a
SPL realization, an expression of IMP ; is computed and Equation
(@) is evaluated with a sarisfiability (SAT) solver [18]. When this
equation is satisfiable, it means that there is at least one product line
members that does not meet the consistency rule instance denoted
by IMP ;. The inconsistent members can be readily identified by in-
specting the values obtained by the SAT solver. We show next how
the propositional formulas for DOMy and IMP s can be obtained.

3.2 Obtaining DOM;

There exists extensive research on mapping feature models to
propositional logic [5} |8]]. This mapping is summarized in Figure
Eh, where P and C1 are parent and child features, and F'1 and F'2 are
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Figure 4: Feature models and propositional logic.

any features of cross-tree constraints. Notice that for brevity, the
figure shows exclusive and inclusive ors mappings with only three
children, but they can have any number of children as illustrated
shortly. The term DOMy is the conjunction of all the propositional
expressions computed as illustrated for our running example GPL
in Figure . The first example shows the special case of the root
feature, it is defined this way because the root is part of all config-
urations. The second example illustrates mandatory feature Base,
while the third one illustrates the optional feature Weighted. To
illustrate the exclusive-or relation, we use the one that contains fea-
tures Search, BFS and DF'S. The only inclusive-or relation in our
example is the one formed with Algorithms and the six graph
algorithms we consider. Lastly, we illustrate both requires and ex-
cludes cross-tree constraints.

3.3 Computing IMP;

Consistency rules describe the semantic relationships that must
hold amongst the different elements of the views. Consistency rules
are usually specified as well-formedness rules [26], or emerge as
standard best practices in certain domains [[16]. In this paper, our
focus is on requiring rules |22, which are rules that assert the pres-
ence of structural elements that a feature requires.

The fixing approaches that we analyze work under certain as-
sumptions. As we proceed, we shall explain them. The first one is
the following:

ASSUMPTION 1. Single feature containment: The requiring el-
ements and the required elements are contained in single features.

Recall our rule presented in Section 2} Message action must be
defined as an operation in receiver’s class. As we discussed be-
fore, in Figure [3] we see that there are two instances of this rule:
i) for method display, and ii) for method addAdorn. The
first instance is already consistent within feature Weighted, that
is, method display is already defined in class Edge. In other
words, both the requiring and the required elements are within a
feature, which just happens to be the same. For the second instance,
we have that the requiring elements (message addAddorn) are all
contained in feature We i ght ed and the required elements (method
addAdorn) are all contained in feature Undirected.



Next, we present how the propositional logic representation of a
constraint instance is obtained.

Propositional logic representation. Let F be a feature that con-
tains the requiring model elements. For a system program that in-
cludes feature F, it must therefore also include at least one other
feature Freq; where the required elements are defined. This is
denoted in the following expressio

IMP; =F= \/ Freg (3)

i=1..k

When feature F requires elements not defined in any other fea-
tures, that is expression \/Freq; evaluates to false, it means that
such an element is not defined in the entire product line. This sit-
uation is clearly an error and renders it unnecessary to verify this
constraint with the SAT solver.

By substituting IMP s in Equation (2, we obtain the logical ex-
pression that is passed to the SAT solver. In this case, it is the
conjunction of all the terms of the features that define an element
that feature F requires.

~(PL; = IMP;) = PLfAF J\ ~Freq. (4

i=1..k

This equation requires that the feature model to be non-void (i.e. to
have at least one feature configuration), otherwise there would be
no products to fix and the equation would never be satisfiable. This
follows because the term PL; would be false if the feature model
is void.

Let us now revisit our constraint instance exam-
ple for message addAddorn. We have that IMP; =
Weighted=Undirected, because the requiring elements
are contained in feature Weighted while the required elements
are in feature Undirected. When our instance example is eval-
uated according to Equation (@), the SAT solver finds the equation
satisfiable. This means that there is at least one feature config-
uration that makes the instance inconsistent. The features that
were selected and those that were not selected can be determined
by looking at the boolean assignment that the SAT solver made.
In our example, one such configuration has feature Directed
selected. Intuitively, this can be understood by considering that
GPL graphs can either be directed or undirected. Thus, what this
result indicates is that any configuration where graphs are directed
would render our constraint instance inconsistent because it would
not contain the required model elements. In the next section, we
elaborate how an inconsistency like this can be fixed.

4. FIXING INCONSISTENCIES

As stated before, our work analyzes two approaches for find-
ing feature(s) where the required elements of a constraint instance
should be placed to guarantee that for all valid feature configura-
tions the instance is consistent. We make the following assump-
tions.

ASSUMPTION 2. Fixing Individual Inconsistency Instances:
The objective is finding for individual inconsistency rule instances
the features where to place their required elements. Thus, the side
effects that fixing an inconsistency can have in other instances are
not considered.

For notational simplicity in the rest of the paper, we overload fea-
ture terms such as F or Freq; to mean propositional logic terms
and the set of software artifacts within a feature. We make the dis-
tinctions explicit when necessary.

Table 1: Pair-wise Commonality values of Weighted

| Feature |PWC ] Feature [PWC || Feature [ PWC |
GPL 44 Undirected 36 Kruskal 13
Base 44 DFS 30 BFS 12
Algorithms 44 Number 23 Directed 8
GraphType 44 CC 18 SCC 4
TestProg 44 Cycle 16 Transpose 4
Search 42 Prim 13

ASSUMPTION 3. Composition idempotence: The underlying
SPL compositional approach is idempotent.

In our context, this assumption implies that if two or more oc-
currences of the required model elements are composed only one
remains in the composition result.

ASSUMPTION 4. Composition monotonicity: The underlying
SPL compositional approach is monotonic.

In other words, the model elements in the features can only be
added but not removed.

4.1 Preliminary Definitions

In this subsection we present more precise definitions of the
terms and operations upon which we describe our fixing strategies
(adapted from [_]]).

DEFINITION 3. Operation filter receives as input a feature model
with a feature set FS and a configuration conf that can be partial,
conf.sel U conf.sel C FS. Filter returns the set of member products
whose configurations prod satisfy conf.sel C prod.sel and conf.sel
C prod.sel.

Consider operation filter applied to our GPL example with con-
figuration [ {Undirected}, (]. The result is the set of products
that have feature Undirected selected, a total of 46.

DEFINITION 4. Pair-wise commonality operation, pwc, receives
as input a feature model P and two features F and G, and returns
the number of products that have both features. It is defined as
pwe(P F, G) = [filter(P, [{F, G},0])|-

As example, the pwc values of feature Weighted are shown in
Table[T] There are several insights that are revealed by these pwc
values:

e Weighted appears in 44 products. This is because the root
feature GPL is always included when We ighted is included
and the pwc value of GPL is 44.

e Features Base, Algorithms, GraphType, and
TestProgram are SPL-wide common features; that
is, they appear in all the product line members. This can be
inferred from pwc values because these features have the
same values as the root GPL.

e Of the 44 products with feature Weighted, 36 use
Undirected feature while 8 use the Directed feature.
Notice that these latter products are precisely those found to
be inconsistent in our example at the end of last section.

DEFINITION 5. A Consistency Rule Instance (CRI) is a 4-tuple
[ERME,TS,FC] where:



e I is the feature that contains the requiring model elements,
i.e. left-hand side term in IMP .

e RME are the requiring model elements.

e TS is the target set which is a set of pairs (feature, REDME)
and represents to the feature that contains the required model
elements REDME. We refer to the set of features in the pairs
of TS as TS [feature].

e FC is a faulty feature configuration that violates the consis-
tency rule instance.

For example, the constraint rule instance of mes-
sage addAdorn is: [Weighted, {addAdornmsg},
{ (Undirected, addAdornep)}, [{Directed, Base,
GPL, Algorithms, ...},{Undirected, ...}11].

Note that we use subscripts msg and op to respectively refer
to the message use and operation definition. Also, for brevity we
elided features of the faulty feature configuration.

DEFINITION 6. Function SafeComposition(DOM¢,F, FS) re-
ceives as input the propositional logic representation of a feature
model DOMy, a feature F, and a list of features FS and evaluates
Equation with IMP;= F = \/GeFS G. Returns Qcony if SAT
evaluation is unsatisfiable, otherwise returns the first faulty config-
uration found.

DEFINITION 7. Fixing set: A fixing set for a CRI [FRME,TS,FC]

is a set of features FS such that SafeComposition(DOMs, EFS)=0con f-

In other words, FS guarantees that CRI is consistent for all feature
configurations.

4.2 Fixing Approaches

Our generic algorithm for computing fixing sets is shown in Al-
gorithm (I). This algorithm computes a new set of target features
F'S where the required elements would be placed. It does so by iter-
atively choosing candidate features according to a fixing approach
fixApp. Function £ixApp must choose a feature from the unse-
lected features of the current faulty configuration FC and that have
not been already chosen in the fixing set F'S. The loop iterates until
no faulty configuration is found. The loop terminates because in
the worst case scenario all features in a SPL (except the requiring
feature F) would be in the fixing set.

Algorithm 1 Generic Fixing Set Computation
Input: CRI of requiring type [F, RM E, TS, FC] with FC' #
Dcong, DOMy, and a fixing approach fixz App.
Output: Fixing set FS.
FC':=FC
FS :=TS[feature]
while FC' # 0cony do
G := fizApp(F,FC', TS, FS)

FS:=FSUG
FC'" := SafeComposition(DOM;y, F, FS)
end while

Let F be a feature, FC a faulty configuration and TS the target set
of a CRI, and F'S a set of features. We now define our two fixing
approaches.

FIXING APPROACH 1. Maximum Pairwise Commonality, max-
Comm(FEFC,TS,FS), computes a feature G such that G € FC.sel ,
G ¢ TS[feature] and G ¢ FS which has the highest pair-wise com-
monality value with F.
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Figure 5: Pair-wise commonality computation time

The intuition behind this heuristic approach is that the candi-
date features with highest pairwise commonality are the most likely
ones to appear in the same configurations where feature F appears
and thus they have the highest chances to resolve the inconsisten-
cies when the required elements are placed in them.

Recall that our CRI for method addAdorn was inconsistent
because our current TS[feature] set only contained feature
Undirected, leaving out the configurations where Directed
is selected. Consider now the pwc values shown in Table [T} Ac-
cording to this table, the first candidate feature for the fixing set is
feature GPL, being the root and therefore having the highest pwc
value. This illustrates a potential caveat of this fixing approach.
Certainly, placing the required model elements in the root feature
will definitively resolve any inconsistencies, but it could be perhaps
not the solution a SPL designer would desire.

The implementation of this approach could be fine tuned to fol-
low different selection schemes, for instance not selecting the root
feature. Another scheme could be not selecting SPL-wide com-
mon features. This latter scheme helps to illustrate a second caveat
of our approach. Based on Table [I] the candidate fixing feature
is Search with a pwc value of 42. Though adding this feature
to the fixing set effectively resolves all the inconsistencies, it cre-
ates an overlap in six products that have both feature Search and
Undirected. From the domain knowledge of GPL (i.e. graphs
are either directed or undirected) we could see that a better solution
is feature Directed.

FIXING APPROACH 2. Random Compatible Feature, ran-
Comp(EFC,TS,FS), ranComp randomly selects a feature G such
that G € FC.sel, G ¢ TS[feature] and G ¢ FS and F appears at
least in one configuration with G (compatible).

The rationale of this approach is gauging if it pays off to compute
the pairwise commonality information when finding fixing sets.
Thus this approach serves as a counterbalance to this first heuristic
one.

5. EVALUATION AND ANALYSIS

To evaluate our algorithm we proceeded as follows. We gathered
45 feature models that are available in the SPLOT repository [2],
and computed with both approaches the fixing sets for all the fea-
tures in all the features models using an empty parameter TS. In the



Algorithm 2 Computing Minimal Size Fixing Sets bfsMin
Input: CRI of requiring type [F, RM E, TS, FC] with FC' #
(Z)conf, and PLf.

Output: Fixing set FS.

FC' :=FC

FS :=TS[feature]

FSQ.enqueue(FS)

while F'C’ # (Qcony do
FSQ.dequeue(FS)
G := maxCom/(F, FC', TS, FS)
FS:=FSUG
FC'" := SafeComposition(DOM;y, F, FS)
FSQ.enqueue(F'S)

end while

return F'S

case of maxComm we implemented the scheme of not considering
SPL-wide common features.

First, we measured the time to compute the pwc values. For this
purpose we use FAMA tool because it permits definition of feature
model operations on different reasoning engines [[1]. We utilized
Binary Decision Diagrams (BDD) [18]], which are more appropri-
ate for the implementation of counting operations such as ours. We
ran our examples on an Intel Core-Duo at 2.8 GHz. The results
are depicted in Figure[5] Clearly, pair-wise commonality compu-
tation time increases steadily as the number of features increases.
It should be noted though that this computation is performed only
once and could be carried out in a lazy form as needed and memo-
ized to implement maxComm more efficiently.

To compare and contrast both fixing approaches we computed
the fixing sets of minimal length following Algorithm (2). This
algorithm uses a Breadth-First search strategy storing the partial
(incomplete) fixing sets in a queue. Notice that because we are
interested only in the size of the fixing sets, it is indistinct which
fixing approach is used, either maxComm or randComp.

Figure [6h shows the average lengths of the fixing sets using ap-
proaches maxComm and randComp, with Algorithm (2)) as a base-
line, denoted bfsMin in the figure. The values of bfsMin are
sorted in increasing order across the x-axis for the 45 SPLOT mod-
els analyzed, and the values of randComp are the average of ten
runs. The first thing that can be noticed is that for the majority
of the SPLs, the average length of the fixing sets fluctuates around
five places. This trend seems to suggest that the number of required
fixing places does not solely relate to the number of features or of
products. Also, as expected, the pairwise commonality approach
maxComm selected on average shorter fixing sets than the random
approach randComp, which indicates that the proposed heuristic
does indeed work.

Figure [6b presents the execution time of approaches maxComm
and randComp as a percentage of their counterpart execution time
of the baseline b f sMin, Algorithm (). The values of bfsMin are
sorted in increasing order across the x-axis and normalized for the
45 SPLOT models analyzed. Because bfsMin is an exhaustive
search method, its execution time took the longest in almost all
cases (only in one instance a random solution took slightly longer)
ranging from 0.7 ms to 597.34 ms. In this latter case, the maxComm
and randComp solutions took less than 1% time of their bf sMin
counterpart.
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6. RELATED WORK

Our previous work illustrated how safe composition could be
used for detecting structural inconsistencies in multi-view UML
models [22]. There has also been work on checking consistency
in other advanced modularization approaches, such as aspects [20];
however, to the best of our knowledge, they do not address consis-
tency in the presence of variability.

The work by Janota and Botterweck has a similar objective, de-
tecting inconsistencies between the variability expressed in feature
models and so-called architectural models (e.g. component mod-
els) [[19]. An important difference with our work is that a feature
can be realized by multiple models and symmetrically a model can
implement more than one feature; in other words, they do not aim
at modularizing features. Their approach works by finding implicit
constraints in the architectural models and use them to enhance the
process of product configuration in an iterative manner.

The work by Atkins et al. proposes Orthographic Software Mod-
eling (OSM) as an approach that aims at providing multi-view con-
sistency management across multiple dimensions such as variants
to capture SPL variability or abstraction to represent ideas of Model-
Driven Development [3|]. A key characteristic of this work is the
Single Underlying Model (SUM) that contains all the information
from all the views. Though keeping all views consistent is a goal of
OSM, it is unclear for us if this consistency also includes checking
all possible product configurations defined with a feature model as
safe composition does.

The work presented in this paper focuses on structural properties
of SPL. However, there is an increasing number of works in veri-
fying behavioral properties. For instance, Classen et al. propose an
extension to transition systems that reifies the concept of features
[[LT].

7. CONCLUSIONS AND FUTURE WORK

In this paper we presented a first step towards fixing inconsisten-
cies in models that have variability. We raised the issue of where
fixes should be placed. We analyzed two approaches, a random
approach and a heuristic approach based on pairwise commonality
values, in terms of the size of their fixing sets and their execution
time. We used a BFS-based approach as a baseline for our compar-
ison. Overall, the heuristic approach does find shorter fixing sets
than the random one, but comes with the overhead of computation
of the pairwise commonality values which may undermine its over-
all performance. Additionally, the heuristic approach yields results
that in some cases are far from the optimal found by the exhaustive
BFS-based approach.

There are several issues that we plan to address as part of our
future work:

e Consistency rules that involve more than one feature in the
requiring or required elements, in other words, i.e. eliminate
our Assumption 1.

e Fixing multiple inconsistency rule instances so that fixing
one may cause inconsistencies in another instance of the same
or other rule, i.e. eliminate our Assumption 2.

e Rules that also indicate composition conflicts, meaning that
two sets of elements should not be present together for cer-
tain feature configurations [22].

e More complex fixing operations, that do not only consider
adding fixes to features but deleting or moving the required
elements across features.
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Figure 6: Fixing Sets average length and computation time

e Combination of heuristics and random searches with the goal
of approximating to the optimal but without the performance
penalty.

To address these open issues, we are currently exploring heuristic
problem solving [25] and search-based software engineering tech-
niques [24]]. They reformulate the open issues like ours as optimiza-
tion problems, for which there might not be optimal or tractable
solutions, but instead good-enough solutions based on some opti-
mization or fitness criteria.
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